5 research outputs found

    A conceptual framework and a risk management approach for interoperability between geospatial datacubes

    Get PDF
    De nos jours, nous observons un intérêt grandissant pour les bases de données géospatiales multidimensionnelles. Ces bases de données sont développées pour faciliter la prise de décisions stratégiques des organisations, et plus spécifiquement lorsqu’il s’agit de données de différentes époques et de différents niveaux de granularité. Cependant, les utilisateurs peuvent avoir besoin d’utiliser plusieurs bases de données géospatiales multidimensionnelles. Ces bases de données peuvent être sémantiquement hétérogènes et caractérisées par différent degrés de pertinence par rapport au contexte d’utilisation. Résoudre les problèmes sémantiques liés à l’hétérogénéité et à la différence de pertinence d’une manière transparente aux utilisateurs a été l’objectif principal de l’interopérabilité au cours des quinze dernières années. Dans ce contexte, différentes solutions ont été proposées pour traiter l’interopérabilité. Cependant, ces solutions ont adopté une approche non systématique. De plus, aucune solution pour résoudre des problèmes sémantiques spécifiques liés à l’interopérabilité entre les bases de données géospatiales multidimensionnelles n’a été trouvée. Dans cette thèse, nous supposons qu’il est possible de définir une approche qui traite ces problèmes sémantiques pour assurer l’interopérabilité entre les bases de données géospatiales multidimensionnelles. Ainsi, nous définissons tout d’abord l’interopérabilité entre ces bases de données. Ensuite, nous définissons et classifions les problèmes d’hétérogénéité sémantique qui peuvent se produire au cours d’une telle interopérabilité de différentes bases de données géospatiales multidimensionnelles. Afin de résoudre ces problèmes d’hétérogénéité sémantique, nous proposons un cadre conceptuel qui se base sur la communication humaine. Dans ce cadre, une communication s’établit entre deux agents système représentant les bases de données géospatiales multidimensionnelles impliquées dans un processus d’interopérabilité. Cette communication vise à échanger de l’information sur le contenu de ces bases. Ensuite, dans l’intention d’aider les agents à prendre des décisions appropriées au cours du processus d’interopérabilité, nous évaluons un ensemble d’indicateurs de la qualité externe (fitness-for-use) des schémas et du contexte de production (ex., les métadonnées). Finalement, nous mettons en œuvre l’approche afin de montrer sa faisabilité.Today, we observe wide use of geospatial databases that are implemented in many forms (e.g., transactional centralized systems, distributed databases, multidimensional datacubes). Among those possibilities, the multidimensional datacube is more appropriate to support interactive analysis and to guide the organization’s strategic decisions, especially when different epochs and levels of information granularity are involved. However, one may need to use several geospatial multidimensional datacubes which may be semantically heterogeneous and having different degrees of appropriateness to the context of use. Overcoming the semantic problems related to the semantic heterogeneity and to the difference in the appropriateness to the context of use in a manner that is transparent to users has been the principal aim of interoperability for the last fifteen years. However, in spite of successful initiatives, today's solutions have evolved in a non systematic way. Moreover, no solution has been found to address specific semantic problems related to interoperability between geospatial datacubes. In this thesis, we suppose that it is possible to define an approach that addresses these semantic problems to support interoperability between geospatial datacubes. For that, we first describe interoperability between geospatial datacubes. Then, we define and categorize the semantic heterogeneity problems that may occur during the interoperability process of different geospatial datacubes. In order to resolve semantic heterogeneity between geospatial datacubes, we propose a conceptual framework that is essentially based on human communication. In this framework, software agents representing geospatial datacubes involved in the interoperability process communicate together. Such communication aims at exchanging information about the content of geospatial datacubes. Then, in order to help agents to make appropriate decisions during the interoperability process, we evaluate a set of indicators of the external quality (fitness-for-use) of geospatial datacube schemas and of production context (e.g., metadata). Finally, we implement the proposed approach to show its feasibility

    MGsP: Extending the GsP to Support Semantic Interoperability of Geospatial Datacubes

    No full text
    Abstract. Data warehouses are being considered as substantial elements for decision support systems. They are usually structured according to the multidimensional paradigm, i.e. datacubes. Geospatial datacubes contain geospatial components that allow geospatial visualization and aggregation. However, the simultaneous use of multiple geospatial datacubes, which may be heterogeneous in design or content, drives to consider interoperability between them. Overcoming the heterogeneity problems has been the principal aim of several research works for the last fifteen years. Among these works, the geosemantic proximity notion (GsP) represents a qualitative approach to measure the semantic similarity between geospatial concepts. The GsP, which has been defined in the transactional context, and can be used to a certain extent in the multidimensional paradigm, needs to be revisited to be more suitable for this paradigm. This paper proposes an extension to the GSP notion in order to support the semantic interoperability between multidimensional geospatial datacubes. The extension, called MGsP, aims to give the possibility to dig into and resolve semantic heterogeneity related to key notions of the multidimensional paradigm

    Enhancing DSS Exploitation Based on VGI Quality Assessment: Conceptual Framework and Experimental Evaluation

    No full text
    The latest advances in spatial information technology have led to the emergence of Volunteered Geographic Information (VGI) as enrichment to existing spatial data sources. Additionally, Decision Support Systems (DSS) are among the fields that have seen major advances. Volunteered Geographic Information (VGI) has great potential as a valuable data source to decision support systems. Several studies have been proposed to integrate VGI data into DSS. However, as VGI data may have different levels of quality, integrating VGI data with poor quality may affect the decision-making process. In fact, VGI data with poor quality. that are obsolete or incomplete, could, if integrated into a spatial DSS, lead to inappropriate analysis results. This paper presents an approach that aims to enhance spatial DSS analysis and exploitation by integrating high quality VGI data that are appropriate to the user requirements, and that have a good indicator completeness and time relevance. The approach introduces a conceptual framework that evaluates VGI data quality and integrates only high quality VGI data into spatial DSS. The proposed approach is experimented on a road maintenance project in Grand-Tunis. We develop the Map-Report prototype, and we evaluate the efficiency of our approach in enhancing data analysis and exploitation in spatial DSS by reducing the error rate and providing accurate and precise analysis results

    A Machine-Learning-Based Approach to Predict Deforestation Related to Oil Palm: Conceptual Framework and Experimental Evaluation

    No full text
    Deforestation is recognized as an issue that has negative effects on the ecosystem. Predicting deforestation and defining the causes of deforestation is an important process that could help monitor and prevent deforestation. Deforestation prediction has been boosted by recent advances in geospatial technologies and applications, especially remote sensing technologies and machine learning techniques. This paper highlights the issue of predicting deforestation related to oil palm, which has not been focused on in existing research studies. The paper proposes an approach that aims to enhance the prediction of deforestation related to oil palm plantations and palm oil production. The proposed approach is based on a conceptual framework and an assessment of a set of criteria related to such deforestation. The criteria are assessed and validated based on a sensitivity analysis. The framework is based on machine learning and image processing techniques. It consists of three main steps, which are data preparation, model training, and validation. The framework is implemented in a case study in the Aceh province of Indonesia to show the feasibility of our proposed approach in predicting deforestation related to oil palm. The implementation of the proposed approach shows an acceptable accuracy for predicting deforestation
    corecore